\qquad

$$
\begin{aligned}
& \mathrm{k}_{1}=11 \mathrm{uM}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{k}_{-1}=13 \mathrm{~s} \mathrm{~s}^{-1} \\
& \mathrm{k}_{2}=9.8 \mathrm{~s}^{-1}
\end{aligned}
$$

1. Determine the value for the equilibrium dissociation constant for $E S\left(K_{D}\right)$. Show your work and include units.
2. Determine the value of K_{M}. Show your work and include units.
3. Draw a sketch of what you expect to observe for a plot of initial rates verses [substrate]. Make sure to label the axes and include numerical values.
4. Draw a Gibbs Free Energy (G) Diagram for this process.

$$
\begin{aligned}
& k_{1} \quad k_{2} \\
& E+S \underset{k_{-1}}{\Leftrightarrow} E S \rightarrow E+P
\end{aligned}
$$

